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Abstract
We propose that the hidden order in URu2Si2 is an incommensurate octupole
order, which is derived from a spin-1 XXZ model with XX octupole and
Z dipole interactions based on the singlet–doublet crystal-field level scheme.
The octupole moments break time-reversal invariance and give rise to finite
hyperfine fields on the nuclei of the ligand Si and Ru ions. In order
for the hyperfine fields to be observed as a nuclear magnetic resonance
(NMR) linewidth, the order must be incommensurate, with the ordering vector
determined so as to account for the 29Si NMR linewidth data quantitatively.

In spite of numerous efforts over two decades to reveal the nature of the hidden order of a heavy-
fermion compound URu2Si2 [1, 2], its order parameter is still controversial, and so is even the
electronic structure of U ions. An order state usually exhibits broken symmetry, and a main
subject is to determine what symmetry is broken [3, 4]. In the hidden order phase of URu2Si2,
time-reversal symmetry is suggested to be broken from the 29Si NMR data, whose linewidth
remains finite (≈10 G) for the magnetic field to vanish [5], as pointed out by Chandra et al [6].
As an order parameter which breaks time-reversal symmetry, we have proposed an octupole
moment of 5f electrons of U ions, by means of accounting for the heavy-fermion behaviour by
a model calculation [7]. Here we analyse the 29Si NMR linewidth data [5], and the 99Ru NMR
data [8], using the XXZ model with XX octupole and Z dipole interactions proposed in [7]. We
show that an order of the octupole moments of x(y2 − z2) and y(z2 − x2) symmetry is a strong
candidate for the hidden order of URu2Si2. We find that the order must be incommensurate for
the hyperfine fields to be observed as an NMR linewidth, similarly to the argument by Chandra
et al [6], who have proposed an incommensurate orbital antiferromagnetism, associated with
circulating currents between U ions. We further show that the octupole moments are nothing but
the spatial distribution of magnetization by illustrating the angular dependence of spin densities
in the ordered state.

Above the transition temperature T0 = 17.5 K to the hidden order, URu2Si2 exhibits heavy-
fermion behaviour, for example in the magnetic susceptibility χc for the magnetic field H
applied parallel to the c-axis (H ‖ c) [1], the resistivity ρ and the electronic part Ce of specific
heat [9]. These quantities show large values characteristic of heavy fermions, accompanied by
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the peaks at ≈50 K (χc), ≈60 K (ρ) and ≈30 K (Ce). Itineracy of the quasiparticles in a heavy-
fermion system is certainly significant, and several novel proposals for the hidden order have
been made on the basis of itinerant models, such as an orbital antiferromagnetism (a density
wave) [6, 10], an unconventional spin density wave [11] and a helicity order [12]. Most of these
theories are formulated regardless of the practical electronic structure of 5f shell of U ions.
However, it is necessary to consider the electronic structure of 5f electrons in order to account
for the magnetic susceptibility χ , as first pointed out by Nieuwenhuys [13]. The practical
electronic structure must be closely related to the nature of the hidden order parameter as well.

The main electronic configuration of U ions in URu2Si2 is considered to be (5f)2, whose
ground-state multiplet 3H4 splits into five singlets and two doublets in a tetragonal crystal field.
If we let |M〉 denote the wavefunctions |5f2514M〉 (=|5f2 LS J MJ 〉) of 3H4, the crystal-field
eigenstates are expressed as: |�1〉 = α(|4〉 + |−4〉) + β|0〉 (singlet); |�2〉 = (|4〉 − |−4〉)/√2
(singlet); |�3〉 = (|2〉 + |−2〉)/√2 (singlet); |�4〉 = (|2〉 − |−2〉)/√2 (singlet); and
|�5±〉 = γ |±3〉 + δ|∓1〉 (doublet), where 2α2 + β2 = 1 and γ 2 + δ2 = 1. The influence of
the crystal-field level splitting is clearly seen in the anisotropy of the magnetic susceptibility χ

with respect to the direction of the applied magnetic field H as χa for H ‖ a (⊥ c) shows a Van
Vleck (or Pauli) paramagnetism, in contrast to the heavy-fermion behaviour of χc for H ‖ c
accompanying a peak structure at ≈50 K [1].

Several crystal-field level structures to account for χc have been proposed, such as
�

(1)

1 –�2–�
(2)

1 –�5 [13]; �3–�1–�2 (3 singlets) [14]; �1–�4–�5–�2 [15]; and �1–�5 (singlet–
doublet) [7]. In these cases, there exist finite matrix elements of Jz for χc only or mainly in the
excited states, whose feature causes the peak structure of χc, or the decrease at low temperature
with decreasing T . Even in the case where the itinerant character of 5f electrons is included,
this feature is crucial to account for the T dependence of χc, as shown in [7]. In the previous
letter [7], we have performed a practical calculation taking account of the heavy-fermion band
formation to analyse χc and Ce above T0, assuming a variety of the crystal-field level schemes.
We have obtained fairly good agreement for �3–�1–�2 and �1–�5, while poor agreement is
obtained for the other schemes, including the lowest �5-doublet scheme. This is because the
behaviours of χc and Ce are governed by the two significant parameters 	CF (crystal-field
splitting) and 	HF, which characterizes the heavy-fermion band width.

Here we comment on the scheme of �1–�4–�5–�2 [15], in comparison with �1–�5 [7]. In
these schemes, the existence of the excited �5 doublet is crucial to account for χc. If the �4

singlet is located near �5, χa is also expected to behave similarly to χc, in contrast to the Van
Vleck-like χa in the experiment [1]. This results from the fact that 〈�4|Jx,y |�5±〉 is inevitably
large enough, the reason for which is as follows. The �4 and �5± states with γ = √

7/8
(δ = −√

1/8) comprise the cubic �5 triplet in a cubic crystal field, for which χa = χc. The
�5± states, as well as �1, in both schemes do not deviate substantially from those of the cubic
states with α = √

5/24. We further note that 〈�1|Jx,y |�5±〉 = 0 for the cubic states, which is
the same as the assumption for the tetragonal �1–�5 scheme to derive our octupole order model.
Therefore, the justification of our assumption may be simply reduced to considering the reason
why the �4 state goes away from the cubic �1–�5 subspace in the relevant low-energy region.

In the case where a practical crystal-field level scheme is taken into account, a candidate
for the hidden order parameter may be a quadrupole or an octupole moment, as proposed by
several authors: quadrupole order models are that of O2

2 (∝ J 2
x − J 2

y ) based on the �3–�1–
�2 level scheme [14], O2

2 or Oxy(∝ Jx Jy) on �5 [16]; octupole order models are that of
T β

z (∝ Jz(J 2
x − J 2

y )) or Txyx(∝ Jx Jy Jz) on �1–�4–(�5−)�2 [15, 17], T β
x (∝ Jx(J 2

y − J 2
z ))

and T β
y (∝ Jy(J 2

z − J 2
x )) on �1–�5 [7]. Among them, the quadrupole order models [14, 16]

may be inconsistent with the 29Si NMR measurement [5], which suggests the breaking of time-

2



J. Phys.: Condens. Matter 19 (2007) 072202 Fast Track Communication

reversal invariance by the hidden order [6], since any quadrupole order parameter is invariant
under time-reversal symmetry. The octupole order models [7, 15, 17] are consistent with the
feature of time-reversal symmetry breaking. Here we adopt the octupole order model based on
the �1–�5 scheme [7], which has the potential to account for the characteristics of the hidden
order phase, including the 29Si NMR linewidth data and also the feature of the close proximity
of the antiferromagnetism to the hidden order. The discussion in [7] is summarized as follows.

In the subspace spanned by |�1〉 and |�5±〉 of the 5f state for a U site, we have eight
independent matrices except the unit matrix, which usually represent three dipole and five
quadrupole moments. We make use of the vector {|�5+〉, |�1〉, |�5−〉} as the base to represent
the matrices, among which three indispensable ones are given as:

⎛
⎜⎝

⎛
⎜⎝

0 1√
2

0
1√
2

0 1√
2

0 1√
2

0

⎞
⎟⎠ ,

⎛
⎜⎝

0 −i√
2

0
i√
2

0 −i√
2

0 i√
2

0

⎞
⎟⎠ ,

( 1 0 0
0 0 0
0 0 −1

)⎞
⎟⎠ .

These matrices are nothing but those for the x , y, z components of the spin-1 (S = 1) moment
(Sx , Sy , Sz), which usually correspond to the dipole moments as Jx = cx Sx , Jy = cy Sy ,
Jz = cz Sz with cx = 2αγ +√

10βδ, cy = −cx , cz = 3γ 2 −δ2. However, the Van Vleck nature
of χa indicates that Jx and Jy are almost inactive in the subspace of �1 and �5±, and hence
cx = 2αγ +√

10βδ ≈ 0. From the analysis of χa,c and Ce [7], we have estimated the values of
the parameters as γ ≈ √

0.8, δ ≈ −√
0.2, α ≈ √

0.28, β ≈ √
0.44, and 	CF ≈ 140 K. In this

case, the degrees of freedom corresponding to inactive Jx and Jy are carried by the octupole
moments T β

x (≡ (
√

15/2)(Jx J 2
y − Jx J 2

z )) and T β
y (≡ (

√
15/2)(Jy J 2

z − Jy J 2
x )), whose matrix

representations are given as T β
x = −d Sx and T β

y = −d Sy , where d = (3
√

6/4)[5β(
√

7γ −
3δ)+√

10α(7γ +√
7δ)]. Then, as a minimal interaction model to describe the hidden order, we

have a spin-1 XXZ interaction model with a uniaxial anisotropy on the body-centred hexagonal
lattice: HXXZ = −∑

i, j [Xi j(Six S j x + Siy S j y) + Zi j Siz S jz] +∑
i 	CFS2

i z , where i ( j ) denotes
a site of U ions. In this model, the order of the XX (xy) components of S indicates an octupole
order, and a slight canting of S from the xy plane induces a tiny magnetic moment along the
c-axis. The present model, therefore, possesses the potential to account for the close proximity
of weak antiferromagnetism to the hidden order in URu2Si2.

We show here that an incommensurate octupole order based on the XXZ model accounts
for the behaviours of the 29Si NMR linewidth [5]. To describe an incommensurate order of the
octupole moments, we transform the Hamiltonian HXXZ to the wavevector representation as
HXXZ = −∑

q[X (q){Sx(q)Sx(−q) + Sy(q)Sy(−q)} + Z(q)Sz(q)Sz(−q)] + √
N	CFS2

z (0)

by the use of X (q) = ∑
j Xi j e−iq·(R j −Ri ), Sx(q) = N−1/2

∑
i Six e−iq·Ri etc, where Ri

denotes the position vector for the i site of U ions, and N the number of U sites. We
apply the mean-field approximation (MFA) to this Hamiltonian, and seek a solution consistent
with the 29Si NMR linewidth data. The criterion of our calculation is that the 29Si NMR
linewidth λ for H → 0 and T → 0 tends to 10 G, regardless of the direction of H , namely
λ‖(H ‖ c) = λ⊥(H ⊥ c) = 10 G. As such a solution, we obtain the XX (xy) order with the
wavevector Q = (0.13, 0.12, 0)2π/a or (0.12, 0.13, 0)2π/a, which is stabilized if X (Q) has
the maximum value. For X (Q) = 34 K, 	CF = 63 K, we have T0 = 17.5 K as the octupole
transition temperature.

Here we add notes to the MFA calculation and the determination of the ordering
wavevector Q. In the MFA, an order with Q corresponding to the maximum of X (q) is
realized for T � T0. The second-order transition temperature T0 is simply obtained from
kBT0/X (Q) = δ/ ln[(1 + δ)/(1 − δ/2)], where δ ≡ 	CF/X (Q). Note that T0 vanishes for δ �
2. The weight (w5) of the upper �5 doublet in the ground state is given by w5 = (1 − δ/2)/2.
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In the present case, δ = 1.84 and w5 = 0.04. The value of Q = (0.13, 0.12, 0)2π/a (or
(0.12, 0.13, 0)) is obtained for a superfluous accuracy of λ‖ = λ⊥ = 10.0 G. If we take deviated
values of Q as (0.11, 0.11, 0)2π/a and (0.14, 0.14, 0)2π/a, we obtain (λ‖, λ⊥) = (9.0, 10.2)

and (λ‖, λ⊥) = (11.0, 9.7) in G, respectively. Therefore, a rather wide range of Q may be
compatible with the experimental data.

In any case, such an incommensurate wavevector Q near the centre of the Brillouin zone
indicates a long-range nature of the interaction, which is considered to result from the RKKY
interaction. Furthermore, it may be necessary to take into account the itinerant nature as a
heavy-fermion system. If we consider a quasiparticle band Hamiltonian together with HXXZ,
an itinerant octupole order will be obtained as an orbital density wave. It will be necessary to
assume an appropriate q dependence of X (q), which may not necessarily have the maximum
just at such a Q. Even in such a case, a Fermi surface instability, which is discussed in the
studies based on the itinerant-localized duality model [18, 19], may cause an itinerant octupole
order with Q. In fact, the nesting feature of the Fermi surface of URu2Si2 has been suggested
by the band calculation [20, 21], as pointed out in [18]. We further note that the value of
	CF = 63 K is approximately half of that for the itinerant model of [7]. This is not a serious
discrepancy. The effective crystal-field splitting in the itinerant model is approximately half of
the parameter 	CF itself, since the Fermi energy lies midway between the singlet (�1) and the
doublet (�5) in the itinerant model.

In the MFA solution that we have obtained, the ground-state wavefunction for the U site at
Ri is given by |�0〉i = √

1 − 2ε2|�1〉 + ε(e−iQ·Ri |�5+〉 + eiQ·Ri |�5−〉), where ε = 0.1414.
The weight of the �5 doublet is given as w5 = 2ε2 = 0.04, which means that |�0〉i consists
of the main (96%) �1 singlet and the small (4%) admixed �5 doublet. The charge and spin
density operators for the 5f electrons in the (5f)2 configuration of a U site are given by
ρ(r) = ∑2

k=1 δ(r − rk) and σ (r) = ∑2
k=1 skδ(r − rk). Here r denotes a spacial point and rk

the position vectors of the electrons, both of which are measured from the subject nucleus,
and r is represented as r = (r sin θ cos ϕ, r sin θ sin ϕ, r cos θ) in the polar coordinates.
The expectation values of ρ(r) and σ (r) = (σx(r), σy(r), σz(r)) with respect to |�0〉i are
expressed as i 〈�0|ρ(r)|�0〉i = R5f(r)2Ci (θ, ϕ) and i〈�0|σα(r)|�0〉i = R5f(r)2�iα(θ, ϕ),
where R5f(r) is the radial part of the 5f wavefunction, and the angular parts of the densities
Ci (θ, ϕ) and �iα(θ, ϕ) (α = x, y, z) are expressed by the spherical harmonics Y m

l (θ, ϕ). For
a site with a phase of Q ·Ri = 2π× (integer), namely a pure Sx (T β

x ) ordered state, the angular
dependence of the charge and spin densities, Ci(θ, ϕ) and �iα(θ, ϕ), are shown in figures 1(a)–
(d), where the sign of spin density is denoted by + (up) and − (down). The scales of the axes
are arbitrary in figures 1(a)–(d), where the scale for Ci (θ, ϕ) is one order of magnitude larger
than those for �iα(θ, ϕ) s. Note that these figures do not show the densities themselves but
only the angular dependence. The radial wavefunction R5f(r) has one node to make a radial
fall-off, which is not shown here. For the other site, the direction of the principal axis (x-axis
for figures 1) rotates by an angle of Q · Ri , for which the corresponding rotated spin densities
are obtained.

While we have no net dipole moment in the present case, an octupole moment can appear
due to spatial distribution of magnetization, consisting of spin and orbital angular momentum
densities, as shown in figures 1(b)–(d) for spin density. We note that, for a pure �1 singlet,
the charge density does not differ substantially from figure 1(a), whereas the net spin density
vanishes everywhere. On the other hand, the present octupole order state |�0〉i has a small but
finite spin density, which breaks time-reversal invariance and causes finite magnetic fields at
ligand Si and Ru sites, as shown in the following.

We consider the origins of the NMR spectra of ligand ions surrounding a magnetic ion,
which have been fully discussed by Abragam and Bleaney [22]. Following their notion, the
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(a) (b)

(c) (d)

Figure 1. Angular dependence of (a) the charge density Ci (θ, ϕ) and the spin density: (b) �iz (θ, ϕ);
(c) �ix (θ, ϕ); (d) �iy (θ, ϕ), for an Sx (T β

x ) ordered state of
√

0.96|�1〉 + √
0.02(|�5+〉 + |�5−〉),

where + and − denote positive and negative spin density, respectively.

author has analysed the 11B NMR data of CeB6 in detail [23], the situation of which is very
similar to that of the 29Si or 99Ru NMR in URu2Si2. The hyperfine coupling of the electronic
moments of the magnetic ions (U) with the nuclear moments of the ligands (Si, Ru) have two
origins: the effect of covalent bonding (transferred hyperfine interaction) and the dipole–dipole
interaction. We will show below that the 29Si NMR can be accounted for only by the dipole–
dipole interaction, while the 99Ru NMR also needs the transferred hyperfine interaction. Here
we show how to calculate the contribution from the dipole–dipole interaction.

The Hamiltonian of the dipole–dipole interaction between the nuclear moment
μn (=γnh̄I) and the electronic moment μe separated by the vector ren is given as Hdd =
μn · [μe/r 3

en − 3ren(μe · ren)/r 5
en], where μe = −μB(l + 2s). The position vector of the

electron measured from the nucleus of the subject magnetic ion is defined by r ≡ ren − R,
with R denoting the vector connecting the magnetic and the ligand sites. Now we use the
Cartesian coordinates r = (x, y, z) ≡ (x1, x2, x3) and define the direction cosines of R as
n ≡ R/R = (n1, n2, n3). For r � R, we expand r−3

en and r−5
en in Hdd with respect to r/R to

obtain

δαβ

r 3
en

− 3
xenαxenβ

r 5
en

= δαβ − 3nαnβ

R3
+ fαβ

R5
+ · · · , (1)

where fαβ = fαβ(n, r) = (3/2)(5nαnβ − δαβ)r 2 − 3xαxβ + 15(nαxβ + nβ xα)(n · r) −
(15/2)(7nαnβ − δαβ)(n · r)2. The first term of equation (1) provides the classical dipole field

5
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Figure 2. Temperature dependence of the ligand NMR linewidth λ. The solid line shows
λ‖ (H ‖ c) = λ⊥ (H ⊥ c) for 29Si NMR, in comparison with the experimental data of λ‖ (open
circles) and λ⊥ (filled circles) from Bernal et al [5]. The broken line shows λ‖ and the dotted line
shows λ⊥ for 99Ru NMR, to be compared with the data from Bernal et al [8].

corresponding to the case where the electronic moment is regarded as a point dipole, which
vanishes in the present model for no applied magnetic field. The second term of equation (1)
is the correction arising from the octupole moment of the asymmetric spatial distribution
of magnetic moment, which now provides the leading contribution to the ligand NMR.
Consequently, we have the α component of the hyperfine field h (Hdd = −μn · h) as hα =
(μB/R5)

∑3
β=1(lβ + 2sβ) fαβ(n, r). The magnetic field for the nuclear moments at the origin

from the octupole correction of the 5f electrons at R is obtained from H (i)
α ≡ i〈�0|hα|�0〉i =

ciμB〈r 2〉5f/R5, where 〈r 2〉5f ≡ ∫∞
0 r 2 R5f(r)2r 2 dr , and ci is a factor to be calculated. We

should note that, after taking the summation over β in the expression of hα , the contribution
from the orbital angular momentum l to H (i)

α vanishes, while that from the spin s remains finite.
This is the important feature for the case with no applied magnetic field, for which the direction
of the electronic moment μe is not fixed.

For a Si site, there are four nearest- and one next-nearest-neighbour U sites separated
by R0 = 0.3152 nm and R1 = 0.3593 nm, respectively [1]. Since 〈r 2〉5f ≈ 2.0 au =
5.60 × 10−3 nm2 [24, 25], we have μB〈r 2〉5f/R5

0 ≈ 16.7 G. It follows that the hyperfine field
of the order of 10 G observed in the 29Si NMR experiment [5] is expected to be accounted for
by this mechanism. Furthermore, the contributions from more distant U sites than R1 may be
negligible due to the dependence of R−5 and the sign alternation in H (i)

α , and hence we take
into account the contributions from the five neighbouring U sites to the hyperfine field on 29Si.
According to our supposed incommensurate order, the environments of 29Si nuclei vary from
site to site, giving rise to a random distribution of the hyperfine fields, which may be observed
as the linewidth of the NMR signal, as pointed out by Chandra et al [6]. We have taken the
values of the parameters as well as the ordering vector so that the hyperfine fields are isotropic
and distributed from −10 to 10 G for T → 0. The results calculated for the NMR linewidth
λ in G are shown in figure 2, where the solid line indicates λ for 29Si NMR in comparison
with the experimental results found by Bernal et al for H ‖ c (open circles) and H ⊥ c (filled
circles) [5]. Note that the magnitude of λ depends on the coefficients of the wavefunctions as
follows: the smaller α or the larger ε in the range 0 < ε � 0.5, the larger the value of λ that is
obtained.

6
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In figure 2, we also show the calculated results of the 99Ru NMR linewidth for the same
parameters as the analysis of the 29Si NMR, where the broken line is for λ‖(H ‖ c) and
the dotted line is for λ⊥(H ⊥ c). The anisotropy of λ⊥ and λ‖, including the ratio for
99Ru NMR, is consistent with the experimental results of Bernal et al [8], but the magnitudes
are approximately one third of the data. These results suggest that there exists a substantial
contribution from the transferred hyperfine interaction for 99Ru NMR, in contrast with the 29Si
NMR. According to band calculations [20, 21], the valence electrons of Ru contribute to the
Fermi surface substantially, while those of Si make little contribution. To analyse the 99Ru
NMR data, therefore, we must take into account the transferred hyperfine interaction, as was
done for the 11B NMR in CeB6 by Hanzawa [23].

Now we discuss the consistency of the present octupole order model with the other
properties of URu2Si2. The calculated results of susceptibility χ and specific heat C agree with
the experimental results qualitatively. The entropy released up to T0 = 17.5 K is estimated
to be 0.24R ≈ 0.35R ln 2, which is somewhat larger than the experimental results [1]. The
present calculation may be partly improved by taking account of fluctuation effects beyond the
mean-field approximation. Furthermore, itineracy is certain to be included simultaneously to
obtain better agreement with the experimental results, as shown in [7] for χ and C above T0.
Nevertheless, even within the present local-‘spin’ interaction model, we will be able to make a
qualitative analysis of the phase diagrams of URu2Si2 [2, 26]. If the value of 	CF in HXXZ is
decreased, which may be realized by pressure p, the XX octupole order is converted to the Z
dipole order in the first-order phase transition. Therefore, it is probable that the phase diagram
of URu2Si2 on the T –p plane [2], as well as that on the H –T [26] plane, is explained by means
of the present XXZ model qualitatively.

In conclusion, we have analysed the ligand NMR linewidth data of URu2Si2 in terms of
an incommensurate octupole order model, and obtained good agreement with the data. The
nature of an octupole order state has been shown to be nothing but the spatial distribution
of magnetization, namely the spin and orbital angular momentum densities, as shown in
figures 1(b)–(d) (see another example for CeB6 in [23]). From this point of view, it is not
essential to take the concept of microscopic eddy current in wavefunctions discussed in [17].
The possibility of an octupole order has also been discussed in other systems, such as NpO2 [27]
and CexLa1−xB6 [28], but its existence is still under debate. To detect its order, a sophisticated
technique is necessary, such as resonant x-ray scattering experiments performed for NpO2 [29]
and Ce0.7La0.3B6 [30], as well as ligand NMR for URu2Si2 [5, 8]. Finally, we comment on the
recent report by Takagi et al [31] that the 29Si NMR linewidth in single crystals is suggested
to be one order of magnitude smaller (≈1 G) and not strictly isotropic, which is somewhat
different from the results for c-axis oriented powder samples of Bernal et al [5]. Even if this
is the case, the essence of the present discussion will not be altered, although the values of the
parameters should be re-determined. A smaller value of λ will be obtained for a smaller ε, as
described above. For example, if we assume δ = 1.99 for the same values of α, β , γ and δ, we
have λ = 2 G for T → 0 along with X (Q) = 56 K and 	CF = 112 K. The NMR linewidth is
still isotropic for the same value of Q, which will be redetermined so as to fit the experimental
data if it is not isotropic.
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